Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.529
Filtrar
1.
Cell Mol Life Sci ; 81(1): 191, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652315

RESUMO

Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.


Assuntos
Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Proteínas de Membrana , Transporte Proteico , Transdução de Sinais , Receptor 4 Toll-Like , Receptores de Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Endocitose/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , RNA Interferente Pequeno/metabolismo , Endossomos/metabolismo
2.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564478

RESUMO

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Ferro , Amido , Nanopartículas Magnéticas de Óxido de Ferro
3.
J Neurooncol ; 167(1): 63-74, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427133

RESUMO

BACKGROUND: Glioma is a type of malignant cancer that affect the central nervous system. New predictive biomarkers have been investigated in recent years, but the clinical prognosis for glioma remains poor. The function of CPLX2 in glioma and the probable molecular mechanism of tumor suppression were the focus of this investigation. METHODS: The glioma transcriptome profile was downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases for analysis of CPLX2 expression in glioma. RT-qPCR was performed to detect the expression of CPLX2 in 68 glioma subjects who have been followed up. Kaplan-Meier survival analyses were conducted to assess the effect of CPLX2 on the prognosis of glioma patients. The knockdown and overexpressed cell lines of CPLX2 were constructed to investigate the impact of CPLX2 on glioma. The cell growth, colony formation, and tumor formation in xenograft were performed. RESULTS: The expression of CPLX2 was downregulated in glioma and was negatively correlated with the grade of glioma. The higher expression of CPLX2 predicted a longer survival, as indicated by the analysis of Kaplan-Meier survival curves. Overexpressed CPLX2 impaired tumorigenesis in glioma progression both in vivo and in vitro. Knocking down CPLX2 promoted the proliferation of glioma cells. The analysis of GSEA and co-expression analysis revealed that CPLX2 may affect the malignancy of glioma by regulating the hypoxia and inflammation pathways. CONCLUSIONS: Our data indicated that CPLX2 functions as a tumor suppressor and could be used as a potential prognostic marker in glioma.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Neoplasias Encefálicas , Glioma , Proteínas Supressoras de Tumor , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Estimativa de Kaplan-Meier , Prognóstico , Transcriptoma , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
4.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38353696

RESUMO

The microtubule-associated protein MAP1B has been implicated in axonal growth and brain development. We found that MAP1B is highly expressed in the most aggressive and deadliest breast cancer subtype, triple-negative breast cancer (TNBC), but not in other subtypes. Expression of MAP1B was found to be highly correlated with poor prognosis. Depletion of MAP1B in TNBC cells impairs cell migration and invasion concomitant with a defect in tumorigenesis. We found that MAP1B interacts with key components for invadopodia formation, cortactin, and Tks5, the latter of which is a PtdIns(3,4)P2-binding and scaffold protein that localizes to invadopodia. We also found that Tks5 associates with microtubules and supports the association between MAP1B and α-tubulin. In accordance with their interaction, depletion of MAP1B leads to Tks5 destabilization, leading to its degradation via the autophagic pathway. Collectively, these findings suggest that MAP1B is a convergence point of the cytoskeleton to promote malignancy in TNBC and thereby a potential diagnostic and therapeutic target for TNBC.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Cortactina , Proteínas Associadas aos Microtúbulos , Neoplasias de Mama Triplo Negativas , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica , Cortactina/genética , Proteínas Associadas aos Microtúbulos/genética , Neoplasias de Mama Triplo Negativas/genética , Células MDA-MB-231 , Proteínas Adaptadoras de Transporte Vesicular/genética , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Feminino , Animais , Camundongos , Camundongos Endogâmicos BALB C , Podossomos/metabolismo , Tubulina (Proteína)/metabolismo
5.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339069

RESUMO

Parkinson's disease (PD) is characterized by substantial phenotypic heterogeneity that limits the disease prognosis and patient's counseling, and complicates the design of further clinical trials. There is an unmet need for the development and validation of biomarkers for the prediction of the disease course. In this study, we utilized flow cytometry and in vitro approaches on peripheral blood cells and isolated peripheral blood mononuclear cell (PBMC)-derived macrophages to characterize specific innate immune populations in PD patients versus healthy donors. We found a significantly lower percentage of B lymphocytes and monocyte populations in PD patients. Monocytes in PD patients were characterized by a higher CD40 expression and on-surface expression of the type I membrane glycoprotein sortilin, which showed a trend of negative correlation with the age of the patients. These results were further investigated in vitro on PBMC-derived macrophages, which, in PD patients, showed higher sortilin expression levels compared to cells from healthy donors. The treatment of PD-derived macrophages with oxLDL led to higher foam cell formation compared to healthy donors. In conclusion, our results support the hypothesis that surface sortilin expression levels on human peripheral monocytes may potentially be utilized as a marker of Parkinson's disease and may segregate the sporadic versus the genetically induced forms of the disease.


Assuntos
Doença de Parkinson , Humanos , Leucócitos Mononucleares/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Biomarcadores/metabolismo
6.
Biochem Soc Trans ; 52(1): 1-13, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38174740

RESUMO

Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.


Assuntos
Síndrome de Down , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia
7.
PeerJ ; 12: e16716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188180

RESUMO

Objective: The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods: Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results: Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02,  = 0.007,  = 0.048) (ERK1: p < 0.001, =0.0003,  = 0.0004; ERK2:p = 0.0003,  = 0.0012,  = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p =  < 0.0001, p =  < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion: After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.


Assuntos
Flagelina , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/genética , Apresentação de Antígeno , Antígeno B7-1 , Proliferação de Células , Citocinas , Flagelina/farmacologia , Glicina Desidrogenase (Descarboxilante) , Interleucina-12 , Interleucina-4 , Mucosa Intestinal , Transdução de Sinais , Receptor 5 Toll-Like/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-37217282

RESUMO

Circulating vascular endothelial growth factor (VEGF) ligands and receptors are central regulators of vasculogenesis, angiogenesis, and lymphangiogenesis. In response to VEGF ligand binding, VEGF receptor tyrosine kinases initiate the chain of events that transduce extracellular signals into endothelial cell responses such as survival, proliferation, and migration. These events are controlled by intricate cellular processes that include the regulation of gene expression at multiple levels, interactions of numerous proteins, and intracellular trafficking of receptor-ligand complexes. Endocytic uptake and transport of macromolecular complexes through the endosome-lysosome system helps fine-tune endothelial cell responses to VEGF signals. Clathrin-dependent endocytosis remains the best understood means of macromolecular entry into cells, although the importance of non-clathrin-dependent pathways is increasingly recognized. Many of these endocytic events rely on adaptor proteins that coordinate internalization of activated cell-surface receptors. In the endothelium of both blood and lymphatic vessels, epsins 1 and 2 are functionally redundant adaptors involved in receptor endocytosis and intracellular sorting. These proteins are capable of binding both lipids and proteins and are important for promoting curvature of the plasma membrane as well as binding ubiquitinated cargo. Here, we discuss the role of epsin proteins and other endocytic adaptors in governing VEGF signaling in angiogenesis and lymphangiogenesis and discuss their therapeutic potential as molecular targets.


Assuntos
Linfangiogênese , Fator A de Crescimento do Endotélio Vascular , Humanos , Linfangiogênese/fisiologia , Ligantes , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose , Clatrina/metabolismo
9.
FEBS Lett ; 598(4): 390-399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105115

RESUMO

Insulin-responsive vesicles (IRVs) deliver the glucose transporter Glut4 to the plasma membrane in response to activation of the insulin signaling cascade: insulin receptor-IRS-PI3 kinase-Akt-TBC1D4-Rab10. Previous studies have shown that Akt, TBC1D4, and Rab10 are compartmentalized on the IRVs. Although functionally significant, the mechanism of Akt association with the IRVs remains unknown. Using pull-down assays, immunofluorescence microscopy, and cross-linking, we have found that Akt may be recruited to the IRVs via the interaction with the juxtamembrane domain of the cytoplasmic C terminus of sortilin, a major IRV protein. Overexpression of full-length sortilin increases insulin-stimulated phosphorylation of TBC1D4 and glucose uptake in adipocytes, while overexpression of the cytoplasmic tail of sortilin has the opposite effect. Our findings demonstrate that the IRVs represent both a scaffold and a target of insulin signaling.


Assuntos
Insulina , Proteínas Proto-Oncogênicas c-akt , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Transporte Biológico , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo
10.
PLoS Pathog ; 19(12): e1011894, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38150467

RESUMO

The protein-coding ability of circRNAs has recently been a hot topic, but the role of protein-coding circRNAs in antiviral innate immunity of teleost fish has rarely been reported. Here, we identified a novel circRNA, termed circMORC3, derived from Microrchidia 3 (MORC3) gene in Miichthys miiuy. circMORC3 can inhibit the expression of antiviral cytokines. In addition, circMORC3 encodes a novel peptide with a length of 84 amino acids termed MORC3-84aa. MORC3-84aa not only significantly inhibited TRIF-mediated activation of IRF3 and NF-κB signaling pathways, but also effectively suppressed the expression of antiviral cytokines triggered by RNA virus Siniperca chuatsi rhabdovirus (SCRV). We found that MORC3-84aa directly interacted with TRIF and negatively regulated TRIF protein expression. In addition, host gene MORC3 attenuates SCRV-induced IFN and ISG expression. Mechanistically, MORC3-84aa promotes autophagic degradation of TRIF by enhancing K6-linked ubiquitination and inhibits TRIF-mediated activation of the type I interferon signaling pathway. And the host gene MORC3 not only repressed IRF3 protein expression but also inhibited IRF3 phosphorylation levels. Our study shows that circMORC3 and host gene MORC3 played a synergistic role in viral immune escape.


Assuntos
RNA Circular , Rhabdoviridae , Animais , Transdução de Sinais , NF-kappa B/metabolismo , Imunidade Inata/genética , Rhabdoviridae/genética , Rhabdoviridae/metabolismo , Citocinas , Peixes , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
11.
J Lipid Res ; 64(12): 100468, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37913995

RESUMO

Common noncoding variants at the human 1p13.3 locus associated with SORT1 expression are among those most strongly associated with low-density lipoprotein cholesterol (LDL-C) in human genome-wide association studies. However, validation studies in mice and cell lines have produced variable results regarding the directionality of the effect of SORT1 on LDL-C. This, together with the fact that the 1p13.3 variants are associated with expression of several genes, has raised the question of whether SORT1 is the causal gene at this locus. Using whole exome sequencing in members of an Amish population, we identified coding variants in SORT1 that are associated with increased (rs141749679, K302E) and decreased (rs149456022, Q225H) LDL-C. Further, analysis of plasma lipoprotein particle subclasses by ion mobility in a subset of rs141749679 (K302E) carriers revealed higher levels of large LDL particles compared to noncarriers. In contrast to the effect of these variants in the Amish, the sortilin K302E mutation introduced into a C57BL/6J mouse via CRISPR/Cas9 resulted in decreased non-high-density lipoprotein cholesterol, and the sortilin Q225H mutation did not alter cholesterol levels in mice. This is indicative of different effects of these mutations on cholesterol metabolism in the two species. To our knowledge, this is the first evidence that naturally occurring coding variants in SORT1 are associated with LDL-C, thus supporting SORT1 as the gene responsible for the association of the 1p13.3 locus with LDL-C.


Assuntos
Amish , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , LDL-Colesterol/genética , Camundongos Endogâmicos C57BL , Colesterol , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
12.
Nat Plants ; 9(11): 1890-1901, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884654

RESUMO

Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Glicosilação
13.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(8): 791-799, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37668025

RESUMO

OBJECTIVES: To investigate the association of single nucleotide polymorphisms (SNPs) of myeloid differentiation factor 88 (MyD88) and Toll-like receptor adaptor molecule 1 (TICAM1) and their interactions with community-acquired pneumonia (CAP) in children. METHODS: Improved multiple ligase detection reaction assay was used for detecting the polymorphisms of nine tagging SNPs of the MyD88 and TICAM1 genes in 375 children with CAP who attended the Department of Pediatrics of the Second Affiliated Hospital of Yan'an University Medical School from August 2015 to September 2017 and 306 healthy children who underwent physical examination. A logistic regression analysis was used to evaluate the association between the distribution of genotypes and their interactions with CAP in children. RESULTS: The polymorphism of the TICAM1 gene at rs11466711T/C locus was closely associated with the susceptibility to CAP in children (P<0.05). The AA genotype of rs35747610G/A locus significantly reduced risk of sepsis in children with CAP (P<0.05). The AA genotype of rs6510826G/A locus was significantly associated with the increase in C-reactive protein level in children with CAP (P<0.05). The GG genotype of the MyD88 gene at rs7744A/G locus significantly increased the risk of respiratory failure and circulatory failure (P<0.05). The multiplicative interactions between MyD88 gene rs7744A/G and TICAM1 gene rs11466711T/C, rs2292151G/A, rs35299700C/T, and rs35747610G/A loci were significantly associated with the susceptibility to CAP, the severity of CAP, and the risk of sepsis in children (P<0.05). CONCLUSIONS: The gene polymorphisms of MyD88 and TICAM1 and their interactions are closely associated with CAP in children, with a synergistic effect on the development and progression of CAP in children.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Infecções Comunitárias Adquiridas , Fator 88 de Diferenciação Mieloide , Pneumonia , Criança , Humanos , Proteínas Adaptadoras de Transporte Vesicular/genética , Infecções Comunitárias Adquiridas/genética , Fator 88 de Diferenciação Mieloide/genética , Pneumonia/genética , Polimorfismo de Nucleotídeo Único , Sepse
14.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37711075

RESUMO

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Defeitos Congênitos da Glicosilação , Humanos , Glicosilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Fibroblastos/metabolismo , Defeitos Congênitos da Glicosilação/genética , Fenótipo
15.
Metabolism ; 148: 155693, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37741434

RESUMO

BACKGROUND & AIMS: Autophagy-related 14 (ATG14) is a key regulator of autophagy. ATG14 is also localized to lipid droplet; however, the function of ATG14 on lipid droplet remains unclear. In this study, we aimed to elucidate the role of ATG14 in lipid droplet homeostasis. METHODS: ATG14 loss-of-function and gain-of-function in lipid droplet metabolism were analyzed by fluorescence imaging in ATG14 knockdown or overexpression hepatocytes. Specific domains involved in the ATG14 targeting to lipid droplets were analyzed by deletion or site-specific mutagenesis. ATG14-interacting proteins were analyzed by co-immunoprecipitation. The effect of ATG14 on lipolysis was analyzed in human hepatocytes and mouse livers that were deficient in ATG14, comparative gene identification-58 (CGI-58), or both. RESULTS: Our data show that ATG14 is enriched on lipid droplets in hepatocytes. Mutagenesis analysis reveals that the Barkor/ATG14 autophagosome targeting sequence (BATS) domain of ATG14 is responsible for the ATG14 localization to lipid droplets. Co-immunoprecipitation analysis illustrates that ATG14 interacts with adipose triglyceride lipase (ATGL) and CGI-58. Moreover, ATG14 also enhances the interaction between ATGL and CGI-58. In vitro lipolysis analysis demonstrates that ATG14 deficiency remarkably decreases triglyceride hydrolysis. CONCLUSIONS: Our data suggest that ATG14 can directly enhance lipid droplet breakdown through interactions with ATGL and CGI-58.


Assuntos
Lipase , Gotículas Lipídicas , Camundongos , Animais , Humanos , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipólise , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Homeostase , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
16.
Immunopharmacol Immunotoxicol ; 45(6): 701-708, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37606515

RESUMO

OBJECTIVE: Septic shock, the most severe stage of sepsis, is a deadly inflammatory disorder with high mortality. Ciclopirox (CPX) is a broad-spectrum antimycotic agent which also exerts anti-inflammatory effects in human diseases. However, whether CPX can relieve inflammatory response in LPS-induced septic shock remains unclear. MATERIALS AND METHODS: Male C57BL/6 mice LPS were injected intraperitoneally with LPS to simulate septic shock in vivo. RAW264.7 cells and bone marrow-derived macrophages (BMDMs) were subject to LPS treatment to simulate septic shock in vitro. ELISA was applied to detect the level of pro-inflammatory cytokines. Cell viability was assessed by CCK-8 assay. Protein levels was detected by western blotting. RESULTS: CPX enhanced the survival rate and attenuated inflammation in mice with LPS-induced septic shock. Similarly, CPX dose-dependently mitigated LPS-induced inflammation in BMDMs. It was also found that Sortilin 1 (SORT1) was upregulated in both in vivo and in vitro models of LPS-induced septic shock. In addition, SORT1 overexpression counteracted the alleviative effects of CPX on the inflammation response of LPS-challenged BMDMs by activating the Wnt/ß-Catenin signaling. Furthermore, BML-284 (a Wnt/ß-Catenin agonist) treatment also abrogated CPX-mediated moderation of LPS-triggered inflammatory reaction in BMDMs. CONCLUSIONS: In sum, we found that CPX protected against LPS-induced septic shock by mitigating inflammation via SORT1-mediated Wnt/ß-Catenin signaling pathway.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Ciclopirox , Inflamação , Choque Séptico , Via de Sinalização Wnt , Ciclopirox/farmacologia , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Lipopolissacarídeos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Macrófagos/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/genética , Inflamação/tratamento farmacológico
17.
Vet Microbiol ; 284: 109849, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37597377

RESUMO

Japanese encephalitis virus (JEV) is a flavivirus transmitted by mosquitoes, causing epidemics of encephalitis in humans and reproductive disorders in pigs. This virus is predominantly distributed in Asian countries and causes tens of thousands of infections in humans annually. Interferon (IFN) is an essential component of host defense against viral infection. Multiple studies have indicated that multifunctional nonstructural proteins of flaviviruses suppress the host IFN response via various strategies to facilitate viral replication. The flaviviruses encoded nonstructural protein 4B (NS4B) is a multifunctional hydrophobic nonstructural protein widely involved in viral replication, pathogenesis and host immune evasion. In this study, we demonstrated that NS4B of JEV suppressed the induction of IFN-ß production, mainly through targeting the TLR3 and TRIF (a TIR domain-containing linker that induces IFN-ß) proteins in the TLR3 pathway. In a dual-luciferase reporter assay, JEV NS4B significantly inhibited the activation of IFN-ß promoter induced by TLR3 and simultaneously treated with poly (I:C). Moreover, NS4B also inhibited the activation of IFN-ß promoter triggered by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in TLR3 signaling pathway. Furthermore, NS4B inhibited the phosphorylation of IRF3 under the stimulation of TLR3 and TRIF molecules. Mechanistically, JEV NS4B interacts with TLR3 and TRIF and confirmed by co-localization and co-immunoprecipitation assay, thereby inhibiting the activation of downstream sensors in the TLR3-mediated pathway. Overall, our results provide a novel mechanism by which JEV NS4B interferes with the host's antiviral response through targeting TLR3 receptor signaling pathway.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Animais , Proteínas Adaptadoras de Transporte Vesicular/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Interferon beta/genética , Interferons , Suínos , Receptor 3 Toll-Like/genética
18.
PeerJ ; 11: e15673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551344

RESUMO

Background: Infertility is recognized as a common and worrisome problem of human reproduction worldwide. Based on previous studies, male factors account for about half of all infertility cases. Exposure to environmental toxicants is an important contributor to male infertility. Bisphenol A (BPA) is the most prominent toxic environmental contaminant worldwide affecting the male reproductive system. BPA can impair the function of the Golgi apparatus which is important in spermatogenesis. GGA1 is known as Golgi-localized, gamma adaptin ear-containing, ARF-binding protein 1. Previously, it has been shown that GGA1 is associated with spermatogenesis in Drosophila, however, its function in mammalian spermatogenesis remains unclear. Methods: Gga1 knockout mice were generated using the CRISPR/Cas9 system. Gga1-/- male mice and wild-type littermates received intraperitoneal (i.p.) injections of BPA (40 µg/kg) once daily for 2 weeks. Histological and immunofluorescence staining were performed to analyze the phenotypes of these mice. Results: Male mice lacking Gga1 had normal fertility without any obvious defects in spermatogenesis, sperm count and sperm morphology. Gga1 ablation led to infertility in male mice exposed to BPA, along with a significant reduction in sperm count, sperm motility and the percentage of normal sperm. Histological analysis of the seminiferous epithelium showed that spermatogenesis was severely disorganized, while apoptotic germ cells were significantly increased in the Gga1 null mice exposed to BPA. Our findings suggest that Gga1 protects spermatogenesis against damage induced by environmental pollutants.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Infertilidade Masculina , Motilidade dos Espermatozoides , Animais , Masculino , Camundongos , Infertilidade Masculina/induzido quimicamente , Sêmen , Espermatogênese/genética , Espermatozoides/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
19.
Immunology ; 170(1): 83-104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37278103

RESUMO

Autosomal recessive (AR) and dominant (AD) deficiencies of TLR3 and TRIF are believed to be crucial genetic causes of herpes simplex encephalitis (HSE), which is a fatal disease causing focal or global cerebral dysfunction following infection with herpes simplex virus type 1 (HSV-1). However, few studies have been conducted on the immunopathological networks of HSE in the context of TLR3 and TRIF defects at the cellular and molecular levels. In this work, we deciphered the crosstalk between type I IFN (IFN-I)-producing epithelial layer and IL-15-producing dendritic cells (DC) to activate NK cells for the protective role of TLR3/TRIF pathway in HSE progression after vaginal HSV-1 infection. TLR3- and TRIF-ablated mice showed enhanced susceptibility to HSE progression, along with high HSV-1 burden in vaginal tract, lymphoid tissues and CNS. The increased HSV-1 burden in TLR3- and TRIF-ablated mice did not correlate with increased infiltration of Ly-6C+ monocytes, but it was closely associated with impaired NK cell activation in vaginal tract. Furthermore, using delicate ex vivo experiments and bone marrow transplantation, TRIF deficiency in tissue-resident cells, such as epithelial cells in vaginal tract, was found to cause impaired NK cell activation by means of low IFN-I production, whereas IFN-I receptor in DC was required for NK cell activation via IL-15 production in response to IFN-I produced from epithelial layer. These results provide new information about IFN-I- and IL-15-mediated crosstalk between epithelial cells and DC at the primary infection site, which suppresses HSE progression in a TLR3- and TRIF-dependent manner.


Assuntos
Encefalite por Herpes Simples , Herpesvirus Humano 1 , Feminino , Animais , Camundongos , Encefalite por Herpes Simples/genética , Receptor 3 Toll-Like/genética , Interleucina-15/genética , Células Dendríticas , Proteínas Adaptadoras de Transporte Vesicular/genética
20.
J Immunol ; 211(1): 130-139, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154684

RESUMO

Methyltransferase (METTL3), the most important N6-methyladenosine (m6A) writer, plays a vital role in regulating immune-related signaling pathways. However, the underlying mechanism of METTL3 action remains largely unknown, especially in lower vertebrates. The results of this study show that METTL3 inhibits innate immune response and promotes the infection of miiuy croaker, Miichthys miiuy, by Siniperca chuatsi rhabdovirus and Vibrio anguillarum. Significantly, the function of METTL3 in inhibiting immunity depends on its methylase activity. Mechanistically, METTL3 increases the methylation level of trif and myd88 mRNA, rendering them sensitive to degradation by the YTHDF2/3 reader proteins. By contrast, we found that the YTHDF1 reader protein promotes the translation of myd88 mRNA. In summary, these results indicate that METTL3-mediated m6A modification of trif and myd88 mRNAs suppresses innate immunity by inhibiting the TLR pathway, unveiling a molecular mechanism by which RNA methylation controls innate immunity to pathogens in the teleost fish.


Assuntos
Fator 88 de Diferenciação Mieloide , Perciformes , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Perciformes/genética , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...